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Abstract

In the last few years, event-based cameras have been explored for use in computer vision, as these cameras show
significant advantages over normal frame-based cameras, including: low latency, high dynamic range, robustness to noise
and high temporal resolution. A lot of data has come with numerous research papers, but unfortunately, to the best of our
knowledge, a key aspect is missing; no such datasets are taken from the point of view of a quadrupedal robot.

In this paper, the methodology is discussed of collecting an event-based dataset using the point of view of a quadrupedal
robot, hoping this will promote more research to be done using event-based cameras on robots. This dataset is collected
in ten different scenes using a Unitree Go1 robot with an Inivation DAVIS 346 event-based camera, where a large amount
of sensory data from both the camera and robot is available in the dataset. This allows for the training of a complete
navigational neural network for quadrupedal robots. The dataset is provided in binary format (rosbag) with the addition
of five camera streams from the Unitree Go1 robot in WebM or MP4 format. This paper provides a further overview of all
available data, the collection and processing method and any recommendations for the usage of this dataset.

1 Introduction

In previous years, standard, frame-based cameras have
been dominating the field of computer vision. Frame-based
cameras have been widely used in autonomous vehicles,
drones, sports cameras, and robots alike. The perform-
ance of the robots partly depends on the frequency with
which the perception system takes in data as well as how
quickly that data is processed. Poor latency of a percep-
tion system can set a hard boundary on the performance
that the system as a whole can achieve. Therefore we
believe that using event-based or neuromorphic cameras
can be a valuable alternative for robots. Event-based cam-
eras only capture changes in brightness, or events, instead
of frames at a set interval like normal cameras. Because
of this event based cameras have very low latency, high
dynamic range and temporal resolution. This means that
event-based cameras can capture even in very dark situ-
ations, where greyscale and RGB cameras would fail, and
capture changes at a much higher speed than greyscale
and RGB.

A potential application where event-based cameras
would be beneficial is for the navigation of quadrupedal
robots. Because they operate in rapidly changing condi-
tions, the aforementioned benefits of event-based cameras
would allow quadrupedal robots to navigate better in vari-
ous situations. A full and comprehensive dataset allows
neural networks to be trained upon it. The trained neural
networks can be used for the navigation of quadrupedal ro-
bots, because they allow us to recognise the patterns in the
relatively new type of data stream generated by the event-
based cameras. Other event-based datasets are being cre-
ated and open-sourced [1]. However, these datasets often
don’t account for various weather conditions and are gen-
erally taken from a handheld position. Moreover, so far no
event-based camera dataset has been found to be captured
from a quadrupedal robot. By publishing this dataset, fur-

ther development in quadrupedal robot navigation will be
possible, finally making this new technology available for
use in common robots. Our goal is to collect a full data-
set from the event-based camera and the quadrupedal ro-
bot using Robot Operating System (ROS) and describe the
methodology to use and recreate it.

There are several datasets that have covered event-
based datasets, one of these is “The Event-Camera Data-
set and Simulator: Event-based Data for Pose
Estimation, Visual Odometry, and SLAM”[1]. The
dataset created in that paper contains all the data from
the event-based camera; the events, images, IMU and the
groundtruth, on 13 different scenarios. Our dataset con-
tains the same information from the event-based camera,
but also contains all the sensors from the Unitree Go1.

The purpose of this work is to describe a methodology to
collect a full event-based dataset, which combines the data
from the event-based camera and the data for the quadru-
pedal robot using ROS. In section 2 the general overview of
both the camera and robot used will be provided. section 3
will describe how the data from all the sensors is captured,
and what pre-processing steps were applied. The actual
dataset will be covered in section 4. This study has been
conducted as a part of the Bachelor End Project for Mech-
anical Engineering students at the TU Delft.

2 Background

For this project, the Dynamic and Active-pixel Vision Sensor
(DAVIS) 346 (see Fig. 1), fabricated by IniVation, was used
[2]. Event cameras capture events instead of full pictures
of every pixel at set time intervals. An event contains 4
pieces of information, the x and y coördinates of the pixel,
the time t the event occurred and the polarity p. This res-
ults in the following data structure: ei = [xi, yi, ti, pi]. Po-
larity indicates whether the brightness change was positive
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or negative. The response of these cameras goes down
to the microsecond level, which makes it effective for any
highly responsive system, such as a robot. While the resol-
ution of the DAVIS 346 is not impressive with its 346x260
pixels, it does capture a grayscale image with its Dynamic
Vision Sensor (DVS) and Active Pixel Sensor, all while keep-
ing energy consumption to a minimum. The advantage of
this type of camera is the incredibly low latency, high tem-
poral resolution, and no redundant information (so small
data sizes). Because of the high temporal resolution, the
event camera can operate indoors and outdoors without
the need to change parameters, such as exposure. This
is especially useful when entering or exiting buildings, as
traditional cameras require a second for the exposure to
adjust, making the robot operator or AI blind.

Figure 1: The DAVIS 346 camera mounted to the Unitree
Go1 robot.

The Unitree Go1 EDU quadrupedal robot, as shown in
Fig. 3), has been employed in a different research context,
where it was modified by adding a backpack on top of the
robot. The quadrupedal has numerous sensors on board.
The sensor suite includes a combination of vision, depth
perception, and motion sensors, allowing for precise map-
ping and localization capabilities. Its motors can also be
used for force measurements, enabling the robot to walk
on different terrains while keeping balance. Furthermore,
the Go1 integrates robust communication capabilities, in-
cluding Wi-Fi and Ethernet, enabling seamless connectivity
and data exchange with other devices or systems. This
extensive array of sensors empowers the Unitree Go1 to
perform complex tasks, including autonomous navigation,
dynamic obstacle avoidance, and interactive engagement
with its surroundings.

Figure 2: The camera mount clamped to the robot back-
pack with the event-based camera on top.

To combine the Go1 robot and the event-based camera, a
mount needed to be fabricated to act as a link between the
backpack and the mounting hardware of the camera. Our
team did this by utilizing an FDM-printer and some simple
CAD. The backpack of the robot had a pickup handle, made

from a solid aluminium rod. In combination with a clamp
around the edge plate, the mount could be clamped around
the rod and plate, providing a secure connection to the
robot and camera. The mount is shown in Fig. 2.

Figure 3: The Unitree Go1 robot, with the DAVIS346
mounted on top.

To successfully produce an event-based dataset useful
for training a neural network for navigation, some require-
ments need to be set. Capturing events from the event-
based camera with minimal to no packet loss is a critical as-
pect to consider in this context. Furthermore, most if not all
sensor data should be included in the dataset. In Table 1,
all the sensors are shown. Furthermore, the sensors that
are minimum requirements for the dataset to be useable
are noted. In addition, reasons are provided for why they
are imperative for the dataset to be useable. The gathered
dataset will be evaluated on the following criteria: Amount
of sensors captured, total length and number of different
scenes.

3 Methodology

In this section, our method is described for collecting an
event-based dataset for quadrupedal navigation using a
modified Unitree Go1 robot and an IniVation DAVIS 346
event-based camera. As will be discussed in the next
chapter, the resulting dataset consists of data from the ro-
bot and from the camera. From both the robot and the
camera data was collected from all sensors present, which
can be found in Table 1. The following subsections describe
our method for collecting the different sensors.

For the dataset, a few different scenarios have to be
used. By choosing the scenes in a clever way, all the dif-
ferent advantages of event-based cameras can be shown
off. The dataset should, furthermore, provide scenarios
where either a similar camera and/or robot could be used
in the ‘real’ world. This dataset could be used to train other
robots to use the event-based camera for navigation. The
dataset needs to cover multiple different options for terrain,
human presence, lighting conditions, amount of edges and
distance to objects. The captured scenes are covered in
section 4.
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Data source Sensor Minimum Reasoning
Events X Bare minimum for dataset to be useable

Greyscale X To still have vision even with exclusively
static objects

DAVIS346: IMU X Alternative if IMU from Go1 is not included,
but less ideal

Camera info
Contains information on
lens distortion and exposure, not imperative
for dataset to be useable

5 RGB cameras Good addition, but not minimum requirement
as DAVIS346 provides video

IMU X Needed for groundtruth

Velocity X Together with IMU data groundtruth can
be found

Unitree Go1: Position With Go1’s IMU and Velocity, groundtruth
can be found without position

Point cloud X Depth information is needed for navigation

Range Point cloud gives similar data, but more is
extensive

Foot force Not necessary for groundtruth
Joint angles Not necessary for groundtruth

Table 1: All sensors on Go1 and DAVIS346, and which are minimum requirements

3.1 Collection processes

In order to capture the data, ROS was used. The robot
was running the ROS master node on ROS Melodic and
an external machine connected via Wi-Fi to it running ROS
Noetic. This mixing of machines and ROS versions was a
deliberate decision to overcome some hardware and soft-
ware challenges.

Hardware challenges As ensuring a complete event-
based dataset was the first priority, some requirements on
the hardware setup were made.
Firstly, it is recommended that a rosbag of a camera

stream is captured on the same machine the camera (node)
is connected to, due to network bandwidth requirements.
Secondly, a USB 3.0 port is required to prevent a bottle-
neck in the event-based camera data stream. Lastly, the
recording machine needs enough RAM and storage speed
to handle the data rate of the recording.
The onboard computer of the Unitree Go1 did not meet

these requirements, causing the need for another machine.
A Raspberry Pi 4B or similar was considered, since they
could be mounted to the robot. However, these single-
board computers are still difficult to obtain, since the chip
shortage of 2020 [3]. In the end, carrying a laptop, near
the robot, proved to be the easiest solution, while still en-
suring no bottleneck was present.

Software challenges Some software challenges were
also present in the system. Foremost, due to unrelated
ongoing research, the robot used an older firmware version
and could not be upgraded. Due to this, version 3.4.2 of
the unitree_legged_sdk [4] had to be used. This, in turn,
meant that the ROS version of the robot is ROS Melodic,
which is no longer supported. This comes with the added
challenge of requiring the use of Python 2, which passed
its end-of-life date of January 1st 2020 and differs vastly
from Python 3.
To mitigate these software challenges, it was chosen to

use ROS Noetic on the external machine. This was possible
as they share the same communication protocol. Another
benefit of this is ROS Noetic is supported and uses Python
3.8. Another advantage of recording on the external ma-
chine was that it allowed us to set an unlimited size of the
message buffer, which prevents the exclusion of messages.

3.1.1 Event-based camera

In order to record the data of the DAVIS 346 into a rosbag,
a ROS driver for such a device is required. For this, two
methods were devised:

RPG DVS ROS The rpg_dvs_ros package is a ROS pack-
age, made by the Robotics and Perception Group of the
University of Zurich and ETH Zurich [5]. This package
provides the message types, viewers, and ROS drivers
for various Event-based cameras. Under the hood, this
package uses libcaer from Inivation to interface with
the camera. However, using this package could in-
crease the risk of packet loss based on the previous
experiments.

Custom node using PyAER After some research, pyaer
was found, which is a Python package which provides
an interface for event-based cameras [6]. This Py-
thon package uses the same library (libcaer) to in-
terface with the Event-based camera. It was con-
sidered to write a ROS driver using this library since
the loss problem could have been related to the
rpg_dvs_ros/davis_ros_driver node. However, it
is notable that maintainers of PyAER recommend us-
ing the rpg_dvs_ros package when using ROS.

In the end, it was decided to use the rpg_dvs_ros pack-
age, and check if any package loss was experienced and
track down its source. An attempt to write our own ROS
driver using PyAER would have been made, in the case
that the cause was a result of the implementation of the
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rpg_dvs_ros package. The full ROS network is shown in
Fig. 4.
Since one frame full of events alone is about 1.1MB,

which can be sent an unknown number of times per second,
the data flow from the events alone is already quite large.
The option was explored to use a single-board computer (a
Raspberry Pi 3B) to keep the robot mobile. Unfortunately,
the single board computer struggled performance-wise, as
the limited memory failed to compile any driver packages
and the micro SD storage failed to keep up with the high
data stream of the event-based camera. This required an
external machine to interface with the event-based camera
and record the rosbags.

The event-based camera driver was also calibrated, for
better image quality of the greyscale image. Also, a lens
distortion calibration was done with camera_calibration
node. Auto-exposure was also turned on to allow for re-
cording outside in greatly varying lighting conditions.

Go 1

Internal GO1 sysem

roscore

LCM Server

bep_capture_node

data provider

External

rosbag record

davis_ros_driver

Camera messages (/dvs/*)

robot_state

/camera*

Figure 4: The ROS network

3.1.2 Collecting the robot state

In order to capture the internal state information of
the Unitree Go1, a ROS node is needed to cap-
ture its internal messaging. Unitree has provided the
unitree_ros_to_real ROS package to work with the ro-
bot [7], since the robot requires SDK version 3.4.2, as men-
tioned before, package version 3.4.0 is required.

This ROS package contains the required message defin-
itions and conversion code, and some examples of con-
trolling the robot with a predetermined plan from a ROS
node. In this version of the SDK, the robot’s commu-
nication goes via an LCM server1 [8]. The initial at-
tempts of creating a ROS node, which could publish the
unitree_legged_msgs/HighState messages based on in-
ternal communication, were not successful. The full ROS
network is shown in Fig. 4.

Therefore, a backup plan was devised in which the ex-
posed Serial Debug port is read with a ROS node. This de-
bug port sends similar state information, as can be found
in a unitree_legged_msgs/HighState message. Imple-
mentation of this node was successful, which can be found

1Lightweight Communications and Marshalling or LCM is a set
of libraries for inter-program and/or inter-system communication.

in the unitree_serial package in our GitHub repository
[9]. However, this solution is quite limiting since the de-
bug information is only printed and therefore published at
roughly 1Hz, which is practically unusable compared to the
velocity of the robot and the frequency of other subsys-
tems.
After further attempts, a ROS node was created that

could receive the data from the Go1 robot. This needed
the following things to work:

• The LCM communication does not work over the
bridged network, as a result, a ROS node which in-
teracts with the LCM server must be run on the robot.

• The LCM server can only respond with a system state,
so a message has to be sent before the state can be
received.

The lack of documentation for the unitree_legged_sdk
made creating the ROS node process difficult. As a con-
sequence, it was unclear if the remote provided by Unitree
would still work when communicating with the robot via
an LCM server in high-level mode. To mitigate this, an
attempt was made to make a controller using the LCM
interface combined with the ROS teleop system. This
was unsuccessful, nevertheless, it was discovered that
the controller provided by Unitree kept working in this
mode. So, a new capture node was created, which
sends zero velocity commands to get a response from
the LCM server, and publishes the state information as a
unitree_legged_msgs/HighState message.
It is notable that the LCM server sometimes acted un-

stable, which resulted in a random crash. The origin of
this was unfortunately untraceable, as the capture node
will keep sending the last received robot state to the ROS
network. As providing false data after the server crashes
is undesirable, it was decided to trim the datasets accord-
ingly. This trimming process is discussed further in sec-
tion 3.2.3.

3.1.3 Collecting the robot’s RGB cameras

As mentioned previously, the robot’s firmware was not
working as expected. This caused all camera data to be
unavailable in ROS itself, which made it impossible to col-
lect the RGB cameras the traditional way in ROS. To get
around these issues, the RGB cameras were collected with
a workaround. This workaround works independently of
ROS unfortunately, which means that without the proper
firmware, it was impossible to collect all camera streams
into the rosbag. The workaround was designed to scrape
the stream from a webinterface of the robot. This resulted
in a Python script using Selenium and JavaScript injection
to extract the WebM stream. The full script can be found
in this paper’s GitHub repository [9].
Using this script, five browser sessions are automatically

booted up into the webinterface of the robot. When a dur-
ation is entered in the terminal, a custom script is injected
into the browser to start saving the webstream. After the
duration has passed, all five camera files are downloaded
in a 464x400 resolution running at 20Hz. An overview of
the cameras plus the event-based greyscale camera can be
found in Fig. 5. As the webstream used VP-9 encoding in
a WebM file format, all camera recordings are provided in
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Figure 5: An overview of all 6 cameras mounted on the
Go1.

WebM format. All clips are also provided in MP4 format with
H.264 encoding for convenience, as playing WebM locally
often raises problems.

3.2 Data pre-processing

In this section, the pre-processing operations are covered.
These include perturbed frame removal, smooth velocity
visualization, and shortening of the bags.

3.2.1 Perturbed frame removal

To make the data more user-friendly, in addition to the raw
data, our team provided a script that can be used to remove
frames with a considerable amount of noise. Rosbags that
were particularly noisy were processed using this script and
will be provided alongside the original data.
An example of such data can be found in instances where

the Go1 quadruped experiences heavy perturbations. Such
instances can be identified by a large number of events oc-
curring in a short amount of time. In practice, the fact
was used that the DAVIS camera batches the events it ob-
serves every 30ms, somewhat mimicking the workings of
a traditional frame-based camera. These batches can each
be inspected and filtered based on the number of events
they contain. An example of such a frame can be seen
in Fig. 6 and an example of a noisy frame can be seen in
Fig. 7. These figures were generated using a script that our
team developed. The positive events in these frames are
white while the negative events are black. Pixels, where
no events occurred in that frame, remain grey.

To achieve this, we propose a metric called the Pixel Vari-
ation Ratio, or PVR. The PVR represents the number of
events relative to the total number of pixels in the DAVIS
camera in percentages. The formula for calculating the PVR
can be found in eq. (1).

PVR =
# of events in a frame
# of pixels in a frame

× 100% (1)

The PVR values were computed for each frame and com-
pared to a pre-defined threshold value. If a frame had a
PVR value that crossed this threshold, this frame would be
replaced by the most recent non-noisy frame. However, It
is worth noting that some rosbags did not necessitate this
process.

Figure 6: Example of normal event footage

Figure 7: Example of noisy event footage

To gain an idea of the PVR distribution for each rosbag
that was collected, Table 2 displays a five-number sum-
mary of the PVR values and whether a processed bag was
provided alongside the original.

To pick the threshold consistently, a mix of trial and error
with some exploratory data analysis was utilized. To that
end, plots like the ones in Fig. 8 were used. Here, The
boxplot and histogram use the PVR’s of every frame in the
relevant rosbag. For this bag, and other bags that needed
processing, the percentage value of the third quartile was
a good starting point. In the case of the Industrial Design
Canteen bag, 60 percent was a good threshold value to use
to remove noisy frames.

3.2.2 Smooth velocity visualisation

For the dataset to be usable, a groundtruth is needed. For
this dataset, the provided groundtruth is the velocity meas-
urement and IMU data. The velocity is measured by the
robot in three directions and one rotation. This captured
velocity data is very susceptible to minor movements of the
robot. Whenever it takes a step, the body of the robot will
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Scene Required
processing Minimum Q1 Median Q3 Maximum

Outside IO Yes 0.00 12.00 20.55 32.95 396.28

CoR hall No 0.02 13.43 24.30 47.65 274.79

Bicycle rack Yes 0.01 17.82 36.14 57.81 338.18

Grass Yes 0.02 17.84 29.43 48.80 348.33

Industrial Design Yes 0.14 4.50 22.78 49.98 255.60

Industrial Design Canteen Yes 0.11 6.80 29.93 45.33 259.11

IO hall upstairs No 0.01 0.02 6.49 20.02 98.59

Mirror No 0.31 8.70 16.80 25.68 220.11

3mE Main Entrance Yes 0.09 21.00 32.99 46.75 364.38

Basement hallway No 0.09 6.50 10.98 16.61 180.23

Table 2: The 5 number summaries of each scene

Figure 8: PVR data plots for the Industrial Design
Canteen bag

vibrate. Next to this accurate, but rapidly vibrating data, a
smoothed velocity curve is also provided, as can be seen
in Fig. 9. This smoothed curve was extracted from the raw
data by applying a Butterworth filter, which filters out the
high-frequency oscillations. This smoothed curve might be
less accurate to the sensor readings but is more represent-
ative of reality. With the provided raw data and code [9],
used to smoothen the curve, a user can tweak the para-
meters to filter out more or less frequencies as desired.

Figure 9: Smoothed velocity curve

3.2.3 Bag shortening

The LCM server, which provides the communication with
the robot and the unitree_legged_sdk, has a tendency
to randomly crash. As a result of such crashes, some re-
cordings do not contain any new velocity measurements
after the crash. This means that if the robot was walk-
ing forwards at a certain speed, the software will think it
maintains that speed perfectly for the remaining duration of
the dataset. This is showcased in Fig. 10. Without the cor-
rect velocity measurements, there is no groundtruth, which
renders the part of the dataset after the crash unusable.
Therefore, the rosbags are provided as one bag with the
unusable part and a trimmed version cut right before the
LCM crash. The cut is made at a quarter second before the
crash, in this manner there is no incorrect data in the data-
set, meaning that everything in the trimmed rosbag can be
used.

Figure 10: Industrial design raw and smoothed velo-
city data
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4 Results

The scenes used for the dataset are summarized and shown
in Table 3, and Fig. 11 respectively. The link to the entire
dataset can be found in the repository [9]. The dataset
needs to satisfy various scenarios for different training pur-
poses, therefore a wide variety of complexity is present in
the captured scenes. The most basic, baseline, scenarios
captured are:

• “Basement hallway”
• “Outside IO”
• “Elevator mirror”
• “IO hall upstairs”

For medium-level complexity the following scenes were
captured:

• “Industrial design”
• “Main entrance 3mE”
• “CoR hall”
• “Grass”

Lastly, the most complex scenes are:
• “Industrial design canteen”
• “Bicycle rack”

The first two scenes serve as baseline scenarios with
minimal activity. To achieve this, footage was captured in
a large indoor hall with a level, hard floor. One of these
baseline scenarios was recorded indoors in the “basement
hallway”, while the other was captured outdoors in the
“Outside IO” area.
Secondly, in addition to quiet indoor settings, three in-

door scenes were recorded with varying levels of human
presence to facilitate complicated scenario training. These
scenes include the relatively quiet “Industrial design”,
the livelier “Main entrance 3mE”, and “Industrial design
canteen” with an abundance of people.
Thirdly, a scene with a wide range of distances, from

close proximity to the camera to objects further away, was
captured. For this purpose, the hallway in the CoR depart-
ment of the 3mE building at the TU Delft was selected.
This long hallway features tables on one side, providing
objects at different distances. The presence of people in
the hallway also allows for potentially complicated scenario
training using the provided dataset. This scene is referred
to as the “CoR hall”.
For the fourth scenario, an outdoor environment with a

soft floor was chosen to enable training of robots to walk
on soft bedding. Outdoors on the grass, the high temporal
resolution of the event-based camera can be effectively util-
ized by leveraging the shadows. This scene also facilitates
the observation of objects in the far distance, such as cars
or pedestrians. Additionally, the busy nature of the loca-
tion offers more potential for complicated scenario training
in outdoor environments. This scene is called “Grass”.
The fifth scenario is designed to train robots for environ-

ments with mirrors. Footage of an elevator mirror in the
3mE building was captured for this purpose. This scene is
referred to as the “Elevator mirror”.
Finally, the “Bicycle rack” scene presents an indoor set-

ting with a hard, level floor but with significant contrast

and a large number of edges. This scene can be useful for
training or testing edge detection algorithms.
An additional scene, “IO hall upstairs”, has been in-

cluded despite not fulfilling its initial purpose as a baseline
scene. Although the unexpected appearance of people in
the scene prevented its use as a baseline, the captured data
can still provide valuable insights for other applications.
To gain a quick overview of the recorded data, a script

was written in order to generate a timeline of the recorded
sensor data. An example of such a plot can be seen in
Fig. 12.

5 Discussion

In this section, potential improvements and flaws of our
method that were encountered will be discussed. These
include unexplored alternative methods and also external
challenges, which left room for possible future improve-
ments.

During the final phases of the project, dv-ros, a ROS
driver made by IniVation themselves, was discovered [10].
This ROS package does not directly depend on libcaer,
but on a more high-level interface. After a quick test with
this driver, the results looked pretty similar to those of
rpg_dvs_ros. However, future testing would be needed
to clarify if there are any actual benefits of using this pack-
age instead of the rpg_dvs_ros package.

Another challenge that was encountered resulted from
configuring the greyscale camera of the event-based cam-
era to use auto-exposure, which allowed us to record data-
sets outside with greatly varying lighting conditions. How-
ever, this has probably resulted in the flickering of the in-
tensity, and poor inside performance of this footage if any
bright large windows are present. It could be beneficial for
future work to recalibrate auto exposure for outside use
and completely disable it when recording inside only data-
sets.

Another unexplored aspect is the configuration of the
event threshold. For our datasets, it was chosen to leave it
at the default settings. When setting this threshold lower
or higher, the detail level can be in- or decreased. This is
a trade-off which could differ for each use case. For future
work, with a more specific application for the dataset in
mind, this threshold can be configured to meet the needs
of the application.

Another challenge we had to overcome was the instability
of the LCM server. This limited the length of some data-
sets due to frequent crashes of the LCM server. Unfortu-
nately, LCM had to be used because of the SDK version,
which was determined by the locked firmware version for
the other ongoing research projects. Newer versions of the
unitree_legged_sdk do not use a LCM server for commu-
nication. It could be beneficial for future work to test if
this new communication method is more stable. This also
might allow the use of the UnitreecameraSDK to access the
cameras [11], which makes the workaround using scraping
obsolete.

To deal with noisy frames, the decision was made to re-
move them and replace them with the most recent non-
noisy frame. While this works, it is one which gets rid
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(a) Outside IO (b) Basement hallway (c) Industrial design

(d) Main entrance 3mE (e) Industrial design canteen (f) CoR hall

(g) Grass (h) Elevator mirror (i) Bicycle rack

(j) IO hallway upstairs

Figure 11: Dataset scenes
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Scene Duration
(s) Benefit of this scene Remarks

Outside IO 120 baseline, outside -

Basement hallway 120 baseline, inside -

Industrial design 49 quiet indoors not full length

Main entrance 3mE 120 lively indoors -

Industrial design canteen 57 crowded indoors not full length

CoR hall 104 wide range of distance not full length

Grass 120 soft floor, shadows for
temporal resolution -

Elevator mirror 41.5 mirror not full length

Bicycle rack 86.5 large amount of edges not full length

IO hall upstairs 35 bonus, indoor
not full length, unexpected ap-
pearance of people, not usable
as baseline

Table 3: The recorded scenes, ‘not full length’ caused by LCM crash

Figure 12: Example of timeline plot

of perhaps too much information, considering that not all
information in a noisy frame is unrepresentative of real-
ity. Moreover, the chosen approach has no regard for time
in general, represented by jarring jumps in moments with
consecutively noisy frames.

As such, two alternative approaches are recommended,
namely; interpolating between the most recent and first-
to-come non-noisy frames, in an attempt to capture the
changes happening between frames, and culling only the
noisy parts of noisy frames (parts with a disproportionate
number of events).

One setback that was encountered when capturing the fi-
nal dataset was the relatively large vibration and translation
of the camera. This was caused by last-minute changes to
the mounting system of the camera by the other project
where the robot was employed. These changes moved the
camera up by 7 cm which caused the vibrations in the dog
to shake the camera much more than before. This has
the undesired effect of some of the frames being covered
almost entirely in events due to the sudden shock to the
event-based camera. Our team supplied the parts to mount
the backpack higher, and believe that with a good redesign
of these parts the shaking could be decreased significantly.
However, it is worth to note that the disturbance from the
longer distance to the camera probably cannot be avoided
entirely. For future work this could be reduced by further
developing the pre-processing algorithm, or by mounting

the camera on a more stable location on the robot.

A comparison can be made between our dataset and
“The Event-Camera Dataset and Simulator: Event-
based Data for Pose Estimation, Visual Odo-
metry, and SLAM” [1]. Our dataset is slightly longer at
14.2 minutes instead of 8.7 minutes, which provides users
with more data to train upon. This dataset also does not
provide simulated scenes and motion tracking. The mo-
tion tracking provides very accurate ground truth, which is
necessary when using only the IMU from the event-based
camera as ground truth. However, such accurate tracking
is not possible when using the robot dog outside of a lab.
Instead, our dataset contains the robot dog’s sensor data
which can be used for ground truth. Another difference
between the datasets is that their dataset uses an older
model of the event-based camera with a lower resolution
of 240 x 180 pixels.

Comparing to “Biologically Inspired Mobile Ro-
bot Vision Localization” [12], one feature that is lack-
ing from our dataset, that theirs includes, is variation in
time of recording. Ideally, future endeavours would cap-
ture scenes at different times of day. Event-based cam-
eras function very well in poorly lit circumstances, whereas
normal cameras tend to struggle in similar situations. Be-
cause of this, it is likely that robots that have to perform
in poorly lit conditions will choose to use event-based cam-
eras. Therefore, a database like ours, that does include
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different times of day could prove quite useful.

6 Conclusion and recommenda-
tion

Event-based cameras are the next big step in robot nav-
igation as they offer low latency, high dynamic range and
high temporal resolution. To be able to use this novel cam-
era type for robot dog navigation, however, a full data-
set from the perspective of a robot dog is needed to train
the neural networks on. With the DAVIS346 event-based
camera mounted on an Unitree Go1 robot dog, a full data-
set with all of their sensors was collected. This includes
events, grayscale images and IMU data from the camera.
As well as 5 RGB cameras, IMU, point cloud, foot forces,
joint angles, velocity and position data from the Go1. Data
was collected at ten locations, both inside and outside, with
a total (useable) length of almost 15 minutes. The ground
truth can be found with the usage of the IMU and velo-
city data from the Go1. Furthermore, from the velocity
data, a smooth curve was made in pre-processing. An-
other pre-processing step applied is the removal of ‘bad’
frames from the event-based camera, which are caused by
the vibrating of the camera when the robot walks. The last
pre-processing step applied was cutting the datasets to the
correct length. Due to a crash that occurred, some data-
sets included incorrect data after a certain time, to ensure
all data was factually correct and useable, the bags were
shortened. After the pre-processing, 853 seconds of us-
able data including all the possible sensors from both the
Go1 and the DAVIS346 remains.
Future endeavours could try to decrease the vibration in

the camera, to ensure that fewer ‘bad’ frames are gener-
ated. Looking at a grander scale, however, future research
could generate datasets mounted on different types of ro-
bots or possible cars. This hopefully makes event-based
cameras more mainstream when it comes to navigation.
To make event-based cameras truly viable, more research
should also be done on the cameras themselves, which
ideally, should increase the technologies accessibility sig-
nificantly.
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