
RO47005 Planning and Decision Making Final Project

David Schep, 5643384; Dielof van Loon, 5346894; Tatsuki Fujioka, 5849837

I. INTRODUCTION

In this project, motion planning for a quadrotor in presence
of static obstacles is developed using state of the art methods,
namely, the rapidly exploring random tree (RRT) and the kin-
odynamic rapidly exploring random tree (RRT-u). During the
simulations of the two motion planners, the static obstacles
are randomly generated in the shape of convex hulls. The
goal of this project is to compare performance of the RRT
and RRT-u algorithms using metrics such as path planning
time, traveling time and travelled distance. Despite both
RRT and RRT-u being sampling-based incremental global
planning methods, the RRT algorithm generates a holonomic
global path to a goal whilst RRT-u provides a non-holonomic
global path, in which velocity and acceleration bounds of an
agent are respected [1]. Among other studies on RRT-u after
its first debut in [1], we attempt to base our implementation
of the RRT-u on the RRT-u algorithm proposed by Urban
Eriksson [2], where edges and nodes of a tree are expanded
based on the utility function which considers the traveling
time of trajectories under two cases: the maximum velocity
case and the maximum acceleration case.

In general, the RRT algorithm without a non-holonomic
local planner is not well suited for the motion planning of
quadrotor as it does not take non-holonomic dynamics of the
quadrotor into account. For instance, when it connects the
randomly sampled vertices, the resulting trajectory includes
the non-smooth corners that might not be feasible to fol-
low for the quadrotor with high velocities. By considering
dynamic constraints, the RRT-u algorithm in [2] produces
smooth trajectories. The author in [2] has also proposed to
use dynamic resizing of the sampling region since the RRT
often struggles to find a path to the goal due to the increase
of the sampling space as the robot explores and covers more
areas. In this project, however, the implementation of the
dynamic resizing is omitted by assuming the prior knowledge
of the locations of the obstacles and some bounding box of
the obstacles.

For simulation environment, gym-pybullet-drones is cho-
sen to provide accurate results on the performance of the
motion planner. This simulator is written in Python and offers
compatibility with gymnasium, an API standard for single-
agent reinforcement learning environments. This compatibil-
ity will come in handy later in the development stage of the
motion planner.

The organization of the report is as follows. First, a basic
dynamics of the quadrotor robot model is introduced in II
which includes some assumptions on the dynamics of the
quarotor. In III, implementations of RRT and RRT-u are

described. After which, the results of our implementations
for the RRT and the RRT-u are presented and compared.
Finally, the obtained results and comparisons are discussed
in V, including recommendations of the future improvements
for our implementations.

II. ROBOT MODEL

Fig. 1: Diagram of quadrotor

In this section, the simplified dynamic equations of a
quadrotor (depicted in Figure 1) consisting of five rigid
bodies, the main body and the four rotors, are presented.
During the derivation of the dynamic equations, the following
three simplifications are made. First, inertia tensor IB in
the body-fixed frame is assumed to be diagonal due to the
symmetry around b1- and b2-axes [4], that is,

IB =

Ib1b1 0 0
0 Ib2b2 0
0 0 Ib3b3

 , (1)

where Ibibi denotes the moment of inertia around bi-axis.
Second, the moment of inertia of the propellers is assumed
negligible when compared to IB . Lastly, the aerodynamic
drag is ignored.

Using the Newton’s second law of motion the translational
dynamics in the inertial frame is expressed as

mr̈ =

 0
0
−mg

+R

 0
0

F1 + F2 + F3 + F4

 , (2)

where m is the mass of the quadrotor, g the gravitational
acceleration, Fi the thrust from ith propeller in the body-
fixed frame and R the rotation matrix which translates the
thrusts into the inertial frame, given by

R(ψ, ϕ, θ) = Rz(ψ)Ry(θ)Rx(ϕ) (3)

https://github.com/utiasDSL/gym-pybullet-drones
https://github.com/Farama-Foundation/Gymnasium


Rx(ϕ) =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 ,Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


Rz(ψ) =

cosψ − sinψ 0
sinψ cosψ 0
0 0 1


(4)

with yaw angle ψ, pitch angle θ and roll angle ϕ defined
around b3-, b2- and b1-axes, respectively [4]. The rotational
dynamics in the body-fixed frame is formulated using Euler’s
rotation equation [4]:

IB

ṗq̇
ṙ

 =

 L(F2 − F4)
L(F3 − F1)

−M1 +M2 −M3 +M4

−
pq
r

× IB

pq
r

 ,
(5)

where vector [p q r]T represents the angle rate of the
body-fixed frame, L the length between the center of mass
(COM) and each rotor, and Mi the reaction torque of ith
rotor. In Equation 5, the first term on the RHS represents
the resultant torque while the second term represents the
gyroscopic effect.

Having derived the two dynamic equations in equations
2 and 5, the two equations are linearized around hovering
attitude in equation 6 by using the small-angle approximation
and setting the collective thrust T =

∑4
i=1 Fi = mg.

ẋ = Ax+Bu (6)

x =
[
x y z ϕ θ ψ ẋ ẏ ż ϕ̇ θ̇ ψ̇

]T
A =

 06×3 06×3 I6×6

03×3 a 03×6

03×3 03×3 03×6


a =

 g sinψ0 g cosψ0 0
−g cosψ0 g sinψ0 0

0 0 0



B =


08×1 08×1 08×1 08×1

1
m 0 0 0
0 1

Ib1b1
0 0

0 0 1
Ib2b2

0

0 0 0 1
Ib3b3

 ,u =


T
τ1
τ2
τ3


To sum up, the linearized dynamics of the quadrotor is
expressed in the LTI system in Equation 6 with 12 states
and 4 inputs consisting of the collective thrust and the torque
around each axis.

Regarding workspace and configuration space of the
quadrotor, a standard quadrotor has workspace W = R3 and
configuration space C = R3 × SO(3). Using the differential
flatness of the quadrotor, one can even reduce the configu-
ration space to C = R3 × SO(1). For the motion planning
in this project, we make an assumption that the quadrotor
is modelled as a point mass to reduce the complexity of
the motion planner, which results in the configuration space
C = R3.

III. MOTION PLANNING

In this section, algorithms of the RRT and the RRT-
u including sub-functions such as steering function and
collision check function are discussed. In the algorithm of
RRT, a steering function of a simple straight line is used to
steer from one node to another. The algorithm of the RRT-
u, on the other hand, uses a steering function which finds a
smooth path based on the minimum traveling time of robot
and the bounds of the velocity and acceleration. For both
algorithms, the collision check of randomly sampled nodes
are based on hyperplane equations of the obstacles in the
shape of convex hulls.

A. RRT

The algorithm of the RRT is shown in Algorithm 1.

Algorithm 1: RRT algorithm(q0, qgoal, N , rmargin)

1 initialization: V ← {q0}, E ← ∅
2 for i = 0 : N do
3 q ← RandomSampling()
4 if not NodeCollisionCheck(q) then
5 qneighbor ← FindNeighbor(q)
6 e← StraightLine(q, qneighbor)
7 if not EdgeCollisionCheck(e) then
8 V ← {V ∪ q}
9 E ← {E ∪ e}

10 if ∥q − qgoal∥ ≤ rmargin then
11 Break out of for-loop

12 Return V , E

In Algorithm 1, q0 denotes the start vertex of the quadro-
tor; qgoal the goal vertex; qnegihbor the neighboring vertex, e
the edge, rmargin the margin between the sampled and goal
vertices, V the set of vertices, E the set of edges. The details
of the functions involved in the RRT algorithm are defined
in the followings.

RandomSampling function returns a random point in the
configuration space (i.e., a 3D position since C = R3)
with probability of 0.99, or otherwise the function returns
the position of the goal vertex with probability of 0.01.
Although the choice of the bias of 99 : 1 may lack theoretical
justification, it has been speculated in [3] to be in a range
that works well experimentally and indeed, we have observed
during the implementation the significant improvement on
not only the planner time but also the distance of the path
to the goal.

NodeCollisionCheck function detects whether the ran-
domly sampled point is in the obstacle-free space. The
detection is based on the equations of hyperplanes consti-
tuting the convex obstacles. For example, let A, B and C
denote sets of normal vectors of triangular simplices for a
convex hull in x−, y− and z−directions; v0 = (x0, y0, z0)
and v = (x, y, z) denote the base position of the convex
hull and the randomly sampled point relative to the global



frame, respectively. If the dot products of the point vector
v = (x, y, z) and the normal vectors satisfies

(A,B,C)·(v−v0) = A(x−x0)+B(y−y0)+C(z−z0) ≤ 0,
(7)

then the randomly sample point is either inside or on the
convex hull. In addition to this condition, we incorporate the
expansion of the collision boundaries of the convex obstacles
by adding the radius of the quadrotor on the RHS of Equation
7, which allows us to randomly sample points from the
collision-free space instead of the obstacle-free space.

FindNeighbor function in the RRT algorithm simply re-
turns the vertex in the expanded set V for which the
Euclidean distance to the sampled vertex is the shortest.

It is important to mention that the algorithm includes a
stopping criteria at line 10 in Algorithm 1. It checks whether
the Euclidean distance between the goal and sampled vertices
is equal/smaller than rmargin. Consequently, the algorithm
returns an approximate solution rather than an exact one.

B. RRT-u

The algorithm of RRT-u is shown in Algorithm 2.

Algorithm 2: RRT-u algorithm(q0, qgoal, N )

1 initialization: V ← {q0}, E ← ∅
2 for i = 0 : N do
3 q ← RandomSampling()
4 G← ∅
5 if not NodeCollisionCheck(q) then
6 for q′ in V do
7 cost, e′ ← Steer(q, q′, σ(q, q′))
8 G← G ∪ {cost× q′ × e′}
9 qneighbor, e← argmin(cost ∈ G)

10 if not EdgeCollisionCheck(e) then
11 V ← {V ∪ q}
12 E ← {E ∪ e}

13 egoal ← Steer(q, qgoal, σ(q, ggoal))
14 if not EdgeCollisionCheck(egoal) then
15 V ← {V ∪ qgoal}
16 E ← {E ∪ egoal}
17 Break out of for-loop

18 Return V , E

RRT-u [2] is in most ways identical to RRT. The main
change from RRT is the way that nodes are connected to
the tree. We first sample a new node q. This candidate
node is compared with every other node in the tree. A cost
is calculated based on dynamical constraints. This cost is
simply defined as the time it takes a point mass to travel
from the parent node to the new node. To be able to calculate
this time, every node stores its velocity and acceleration as
well as the position. After this calculation, the candidate
parent node with the lowest estimated time is chosen. The
quadratic path that the point mass takes is then sampled and
the samples are collision checked. If the path does not collide

with any obstacles, the node and the edge is added to the
tree.

When a new node is added to the tree, RRT-u will attempt
to connect this node with the goal node. If this connection
is possible, following the dynamical constraints and the
collision check, the goal node is added to the tree. This is
different from RRT where the goal node is sampled randomly
with a probability of 0.01. Every node stores the time it
estimates the pointmass to make when traveling from the
parent position to its own position. When a new node is
added to the tree, it adds the estimated flight time of the
parent to its own calculated time. In this way every node
knows how much time it takes to get to its position from
the root of the tree. When multiple branches have added the
goal node to their branch, the goal path with the lowest total
time is chosen. In Algorithm 2,

IV. RESULTS
In this section, the results of the simulation of the RRT and

the RRT-u algorithm are compared. The simulation results
have been collected by generating a random environment
with 30 randomly generated convex hulls, while making
sure the start and goal node has been cleared from any
obstacles. Each algorithm was ran in 100 different random
environments, while tracking the performance metrics aver-
ages shown in Table I. Both planners are given 3 seconds
of planner time, meaning that if the planners cannot find a
solution, it is regarded as a failure.

TABLE I: Average of 100 different simulation results

Metric RRT RRT-u
Goal Found (%) 0.85 0.98

Goal Reached (%) 0.941 0.938
Travel time (s) 4.897 3.108

Error X (m) 70.821 84.305
Error Y (m) 70.709 84.055
Error Z (m) 10.501 9.580

Path distance (m) 7.254 6.758

It can be seen in Table I that RRT-u often outperforms
RRT, as only RRT beats RRT-u in tracking error. The reason
for this is that the tracking error is calculated from the drone
to the current waypoint which makes for an unfair compari-
son, as the two algorithms spread their waypoints differently.
RRT uses a linear spread between its current and next node,
while RRT-u increases its distance between waypoints when
velocity increases. This means that tracking error of the
quadrotor with the PID controller can be accentuated with
higher velocity. Besides this, RRT-u is able to find the goal
a lot more often than RRT, while creating a shorter path
which can be travelled a lot quicker than the path generated
by RRT. This is due to the nature of RRT-u, as it generates
a smooth instead of a jagged path.

RRT and RRT-u can be visually compared in Figure 2,
both with and without the environment displayed. This might
accentuate the pros of RRT-u the most, as the planning tree of
RRT-u can be seen to be smooth, which is related to Figure 3.
The environment with the random convex hulls can also be
seen in this figure.



(a) Planning tree of RRT (b) RRT without visualization of
obstacles

(c) Planning tree of RRT-u (d) RRT-u without visualization
of obstacles

Fig. 2: Simulation results for one random realization of ob-
stacles: red cross represents goal vertex, blue lines represent
planned trees and green lines represent path-to-goal

In Figure 3 another pro of a smooth curve can be seen.
The rate of stability is the percentage of times the drone
has reached its destination successfully, while the velocity
that the drone travels is plotted on the other axis. It can be
seen that RRT-u offers a higher stability, especially at higher
velocity. This is due to the drone being able to track the
smooth trajectory much better than the jagged trajectory that
RRT offers.

V. DISCUSSION

When comparing the solution rate of RRT and RRT-u, one
can notice that RRT has a lower success rate than the other.
This result is somewhat counter-intuitive since the RRT has
more ”degrees of freedom” in the sense that its expansion
of edges are less restricted as RRT does not include the
kinematic bounds. A plausible reason for the difference in
success rates is the difference in frequency of the attempts
to directly connect to the goal vertex. For example, the RRT
algorithm in Algorithm 1 tries to add a direct edge to the goal
vertex with probability of 1% while the RRT-u in Algorithm
2 attempts to connect a sampled vertex to the goal at every
iteration, leading to a higher chance of finding a solution for
the RRT-u within the maximum allowed planner time (3s).

As for the success rates of the quadrotor reaching the
goal for the RRT and RRT-u, the results reveal little to no
difference between them, which could be counter-intuitive
since we expect that the quadrotor with the RRT-u is more

Fig. 3: Scatter plot showing the drone rate of success vs the
velocity of the drone.

likely to reach the goal due to the smooth trajectory of
the algorithm. This, however, could be attributed to the
difference in the number of vertices in the solutions of RRT
and RRT-u: as can be seen in Figures 2b and 2d. RRT-u has
significantly fewer vertices than the RRT in the trajectory to
the goal. Since the same number is used when dividing each
edge of the paths of the two algorithms into small waypoints
to generate the reference signals to the PID controller, the
control over the quadrotor with the RRT-u tend to be more
aggressive than the RRT-u, and vice versa. As a consequence
of this, the quadrotor with RRT is more likely to move slowly
along the trajectory, making the motion more holonomic-like,
whereas the aggressive control on the quadrotor with RRT-u
uses the advantage of the smooth trajectory.

The results show that the RRT-u tends to provide a shorter
path than the RRT. Although the utility function is about
the traveling time rather than the travel distance, the results
accord with our expectation since avoiding obstacles in a
smooth trajectory tends to be shorter than avoiding the same
obstacles in a jagged trajectory. This can also be seen in
Figures 2b and 2d, where the trajectory of the RRT-u to the
goal is shorter than that of the RRT.

Apart from the conclusions made above, we provide the
following recommendations for the future improvements of
the motion plannings. First of all, as RRT as well as RRT-u
are probabilistically complete but not optimal, making both
planners optimal is desirable. To make the RRT algorithm
an optimal algorithm, we can either incorporate Dijkstra’s
algorithm with the Euclidean distance as an edge cost or
A* algorithm with the Euclidean distance as a heuristic
function. Furthermore, in case the differential flatness is
employed in the motion planners (i.e., configuration space
C = R3 × SO(1)) and thus the edge cost is not only
the Euclidean distance of two vertices but also the rotation
around the yaw angle, the use of the Euclidean distance as a
heuristic function in the A* algorithm could be advantageous



as it underestimates the edge cost.
Based on the average values in Table I, it is apparent that

there is some room left for improvement in the success rate of
the quadrotor reaching the goal position obtained. For RRT,
implementing a non-holonomic local planner is necessary to
achieve a success rate of 100%. A possible candidate for
the local planner is a model predictive controller (MPC)
with the equation of motion in Equation 6 as a dynamic
equality constraint and the hyperplane equations in Equation
7 to avoid collisions. Additionally, we recommend using a
quadratic cost of the states and the inputs in the MPC as the
quadratic cost function, combined with the aforementioned
linear constrains, forms a convex optimization problem. As
for improving the success rate of the RRT-u, the choice
of the hyper parameters such as the upper/lower bounds of
the velocity and acceleration need to be validated based on
the stability of the quadrotor with the PID controller. For
example, one could investigate the maximum acceleration
and deceleration at which the quadrotor becomes unstable
and use them in RRT-u. Alternatively, one could possibly
achieve a 100% success rate by combining the dynamic
constrains of the quadrotor to the kinematic constraints used
in our implementation.

Lastly, although the cause of the relatively low success
rate of RRT finding a solution is not known, we deduce that
the cause of low success rate is partly attributed to the over-
approximation of the collision bounds of the obstacles as it
can lead to smaller collision-free space. Therefore, a better
implementation of the collision bounds in the gym-pybullet
environment needs to be sought for.

REFERENCES

[1] Bruce Donald, Patrick Xavier, John Canny, and John Reif. Kinodynamic
motion planning. J. ACM, 40(5):1048–1066, nov 1993.

[2] Urban Eriksson. Dynamic path planning for autonomous unmanned
aerial vehicles, 2018.

[3] Steven M. LaValle. Planning Algorithms. Cambridge University Press,
USA, 2006.

[4] Caitlin Powers, Daniel Mellinger, and Vijay Kumar. Quadrotor Kine-
matics and Dynamics, pages 307–328. Springer Netherlands, Dordrecht,
2015.


	INTRODUCTION
	ROBOT MODEL
	MOTION PLANNING
	RRT
	RRT-u

	RESULTS
	DISCUSSION
	References

