
SEM: Project
Report

Tripper: Always on
time!

Group 23

SEM: Project
Report

Tripper: Always on time!
by

Jasper van Brakel, 5323215,
Maarten Koopmans, 5186374,
Dielof van Loon, 5346894,
Roland van Dam, 5029511,
Jacob Reaves, 5348609

Contents

1 Introduction 1

2 Software Development Process 2
2.1 Reflection . 3

2.1.1 Sprint 1 retrospective. 3
2.1.2 Sprint 2 retrospective. 3
2.1.3 Sprint 3 retrospective. 3
2.1.4 Sprint 4 retrospective. 3
2.1.5 Sprint 5 retrospective. 3

3 Requirements Engineering 4
3.1 User stories . 4
3.2 The future of the product . 7

4 Software Architecture 9
4.1 General architecture . 9
4.2 Google Calendar API interface . 9
4.3 Google Maps API interface . 10
4.4 Users . 10
4.5 Telegram bot . 11

5 Software Testing 12
5.1 Tests . 12

5.1.1 Test Google calendar. 12
5.1.2 Test Google Maps . 12
5.1.3 Test telegram bot . 13

5.2 Coverage . 13

6 Reflection and Adaptation 15
6.1 Jasper van Brakel . 15
6.2 Maarten Koopmans . 15
6.3 Dielof van Loon . 15
6.4 Roland van Dam . 15
6.5 Jacob Reaves . 16

7 Conclusion 17

Appendices 18

A Supporting Material 19
A.1 Sprint 1 . 19

A.1.1 Planning. 19
A.1.2 Review . 19

A.2 Sprint 2 . 20
A.2.1 Planning. 20
A.2.2 Review . 20

A.3 Sprint 3 . 20
A.3.1 Planning. 20
A.3.2 Review . 20

A.4 Sprint 4 . 21
A.4.1 Planning. 21
A.4.2 Review . 21

i

Contents Contents

A.5 Sprint 5 . 21
A.5.1 Planning. 21
A.5.2 Review . 21

Bibliography 22

ii

1
Introduction

GitLab link:
https://gitlab.ewi.tudelft.nl/ti3115tu/2022-2023/
Group-23/

Nowadays, a vast amount of people have replaced their pen on paper agenda with an application
on their smartphone. More specifically, the online agenda app created by Google, which is the most
widely used online agenda, has over one billion downloads from the Play Store alone [2] An online
agenda provides many functionalities over a traditional one. Some major ones are: Being able to store
more information per agenda point; Automatic integration of multiple agendas; Sharing an agenda with
multiple people; Adding reminders and alarms. Unfortunately, the Google agenda app does not make
full use of its potential. A significant portion of appointments require the user to travel. However, Google
Agenda does not provide any useful features to help relieve users of numerous repetitive tasks that
come with planning to travel to - and from these locations. It takes time the find the location, think
about and choose your travel method and then plan your itinerary in Maps or another navigation app.
Google Agenda also doesn’t automatically remind people of the travel time or when they need to depart,
causing people to run late for their appointment.

This is where Tripper provides a solution. The app calculates the time, according to the preferred
travel method, at which you need to leave your house/current location to get to the appointment location
and arrive in time. It blocks the calculated time in the users Google Calendar and can also send
departure reminders and add a Google Maps link to the itinerary. This app will be extra useful for TU
Delft students since it will interpret faculty building codes and convert them to appointment locations.

By making use of this software, a repetitive task is taken out of hands, saving a lot of time in the
long run. And it will help users to never run late again for important appointments.

1

https://gitlab.ewi.tudelft.nl/ti3115tu/2022-2023/Group-23/
https://gitlab.ewi.tudelft.nl/ti3115tu/2022-2023/Group-23/

2
Software Development Process

Throughout this project, the principles of the agile manifesto are kept in mind. Frequently delivering
working software and increasing effectiveness throughout the project is of high importance, to be able
to deliver a working end product in a relatively short period of time. That is why a scrum workflow is
adopted by the team. The workflow was kept up with 2 meetings during the week. A short-term plan
was made in these meetings to know what had to get done before the next meeting.

Our issue system works as follows; all issues receive a label on creation in line with the MoSCoW
method. A weight and milestone number are also added. During development, a Kanban board was
used to keep track of the completion of the issue, as displayed in Figure 2.1.

Figure 2.1: Our Kanban board during development.

The issues are assigned according to previous knowledge about the issue, weight, and priority.
The first working version of the software was realized at the end of sprint 2, while the requirement

of a solid software setup for the whole project was also adhered to. Now part of the focus will shift to
completing a draft report, by working on point 4 of A.3.1. Planning the supporting material, while still
working on adding features to the software.

2

2.1. Reflection 2. Software Development Process

2.1. Reflection
2.1.1. Sprint 1 retrospective
During the work done in sprint 1.(A.1) Additional features that are needed in the future were already
worked on to have a strong base for upcoming sprints. Most of the group effort was put into researching
what code was most important to first write. And the actual code writing.

In the end, most of the planned tasks took longer than estimated so the time management was not
on point. During upcoming sprints, this will be considered more carefully.

2.1.2. Sprint 2 retrospective
During this sprint, it already showed that the extra work done in sprint 1 had us save time during this
sprint.(A.2) By creating an initial setup in sprint 1 for the software so that in the future all features could
be added smoothly and with less modification to the initial code.

A basic working version of the software was realized during sprint 2. This was an important mile-
stone that needed to be achieved. Now it is important to put more effort into the report to have a draft
version by the end of sprint 3.

2.1.3. Sprint 3 retrospective
Up until the end of this sprint. One group member had been working hard on creating a working version
of the telegram bot. This was an essential part of the software for the Tripper to work with specific user
information, like the home location. The Telegram bot was nearly working and the report was getting
completed.(A.3)

Now that a working version of the software exists and functions are being added, it is important to
write tests for these functionalities. So in sprint 4, work will be put into writing tests, writing the report,
and completing some of the remaining ”must have” and ”should have” issues.

2.1.4. Sprint 4 retrospective
In this sprint, all of the ”must have” issues were completed and most of the ”should have” issues were
completed.(A.4) There was more focus put into writing the report. The first final version of the report
was made.

Now that most of the issues were completed and the deadline of the project was coming up. The
focus will be more on writing the report and implementing the feedback gotten from the TA. Also, adding
all the documentation of the project, like a ReadMe. The last thing that will be done to the software, is
to try and get it run on a server.

2.1.5. Sprint 5 retrospective
This last sprint was dedicated to getting the software to be run on a server.(A.5) Some issues were
changed to ”won’t do” so that more work could be put into more important issues. The rest of the work
was put into report writing.

3

3
Requirements Engineering

For this report, user stories were used for coming up with software requirements. This suited the
development process better compared to use cases. Since the bigger priority was how the user is
going to interact with the software, instead of how to software was going to work internally. Some
problems were how a UI was going to be implemented, because of the work that already needed to be
done. It couldn’t be that complicated. So eventually the telegram bot was chosen because there are
many people already working on that, so most of it should be easy to find.

The user stories are detailed enough so that a full set of software requirements is also described
within these user stories. This was the goal from the beginning, and it was also the main challenge
while writing the user stories. Namely making sure that as a whole, the user stories were detailed
enough so that no important requirements were neglected or forgotten.

3.1. User stories

Title: Google API login Priority: Must have Weight: 3
As a new or existing user, I need a google API key to get
access to google calendar. This makes it possible for the software
to edit and add something to a calendar, using this API key.
Acceptance criteria: The user retrieved an API key
of their google calendar, and the Tripper software
can make use of this key to get access to the calendar.

Table 3.1: Milestone 1 issue Google API login

Title: Write user calendar Priority: Must have Weight: 2
For each appointment, I want to have travel time
blocked before the appointment in my Google calendar.
For this, it is necessary that Tripper can add and write
appointments in my calendar
Acceptance criteria: The Tripper adds an appointment in
my Google calendar before every appointment that
requires me to travel.

Table 3.2: Milestone 1 issue Write user calendar

4

3.1. User stories 3. Requirements Engineering

Title: Appointment data Priority: Must have Weight: 1
For each appointment, I want to receive the correct travel time
in my Google calendar. For this, it is necessary that Tripper
can read the appointments in my calendar so it can
calculate travel time.
Acceptance criteria: Tripper is able to gather data from
appointments in my Google agenda and create a file with
this information to be used for calculating travel time

Table 3.3: Milestone 1 issue Appointment data

Title: Finding the amount of time
between appointments Priority: Must have Weight: 2

I want to know the correct travel time between two
subsequent appointments.
Acceptance criteria: The Tripper can compare the time
between appointments and estimate the travel time.

Table 3.4: Milestone 2 issue Finding the amount of time between appointments

Title: Basic interface setup Priority: Must have Weight: 3
As a new Tripper user, I can provide Tripper
with necessary information, by sharing this information
during an automated conversation with a bot on Telegram.
Acceptance criteria: I can share the maximum distance that
I want to travel by foot and by bike and the minimum distance
to travel by car and by train.

Table 3.5: Milestone 2 Basic interface setup

Title: Add dedicated homes to each user Priority: Must have Weight: 1
I can provide the Telegram bot with a home address,
which the Tripper can set as default departure address
Acceptance criteria: The Tripper saves and stores the home address
that I provide. The home location can be changed.

Table 3.6: Milestone 2 Add dedicated homes to each user

Title: Interpreting the TU faculty
building codes Priority: Should have Weight: 2

As a TU Delft student or employee, Tripper needs to be able
to parse a TU Delft faculty building code from an appointment
in my agenda, and return the corresponding Google maps location
Acceptance criteria: Tripper can translate TU Delft faculty building
codes to Google maps destinations

Table 3.7: Milestone 2 Interpreting the TU faculty building codes

5

3.1. User stories 3. Requirements Engineering

Title: Checking the validity of
location based Priority: Must have Weight: 2

I only want to see travel times blocked in my calendar for appointments
that include TU Delft faculty building codes or a valid
Google maps location
Acceptance criteria: Shows the travel time when the location is a
valid google maps location. Shows the location when the location is
a valid TU Delft building code/Faculty descriptor.
The validation should fail when multiple options are presented

Table 3.8: Milestone 2 Checking the validity of location

Title: Choosing the travel method Priority: Must have Weight: 2
Each of the travel times I can find in my Google calendar
is based on the travel method that is best suited
for the appointment that it belongs to.
Acceptance criteria: The Tripper will automatically choose
a travel method for each appointment, based on my travel preferences.
I can manually change the travel method for each appointment.

Table 3.9: Milestone 2 Choosing the travel method

Title: Estimate travel time using
the Google maps API Priority: Must have Weight: 2

I need Tripper to make an accurate estimation of travel times
for each appointment, by using Google maps..
Acceptance criteria: Tripper uses either my home address
or the location of a preceding appointment as departure location.
Tripper determines the appointment location as destination.
Tripper estimates all possible travel times using Google maps
and chooses the method that best suits the preferences
To each travel time appointment in my Google calendar,
Tripper adds the corresponding estimated travel time.

Table 3.10: Milestone 2 Estimate travel time using Google Maps

title: Interface: saving the user data Priority: Must have Weight: 1
After providing the Telegram bot with my information.
I need the tripper to store the data so it can use it for
all appointments in the future.
Acceptance criteria: The user data entered in the Telegram
bot gets stored in a file and can be accessed by the Tripper

Table 3.11: Milestone 3 Saving the user data

Title: Interface: Update calendar
with the travel time Priority: Should have Weight: 2

As a user, after I the time or location of an appointment
in my agenda gets changed, I need the Tripper to automatically
update the corresponding travel time.
Acceptance criteria: The Tripper rereads and recalculates
the travel time after the appointment is changed

Table 3.12: Milestone 3 Interface: Update calendar with the travel time

6

3.2. The future of the product 3. Requirements Engineering

Title: Add maps link to
appointment Priority: Should have Weight: 1

A link is included in the travel time event in my
Google calendar. This link will direct me to the correct
itinerary on Google Maps
Acceptance criteria: Even before the time of departure,
a link to Google Maps will be available.
In google maps, the itinerary is pre-selected and ready
to be used for directions.

Table 3.13: Milestone 2 Add maps link to appointment

Title: Notification set up Priority: Could have Weight: 1
If I wish to be reminded of my departure time in advance.
I am able to have to Tripper set a notification/ alarm in
the Google calendar travel time event
Acceptance criteria: If switched on, a notification will be set
that triggers a specified amount of time before the time of
departure

Table 3.14: Milestone 3 Notification setup

Title: Server setup Priority: Should have Weight: 2
I am able to have the Tripper run continuously
to always have the Google calendar be up to date.
Acceptance criteria: The Tripper runs 24/7 remotely
from a server

Table 3.15: Milestone 4 Server setup

Title: Mock telegram
messages from user Priority: Could have Weight: 2

As a developer, I can enter messages in the Tripper
in python code style, which act as
real Telegram messages, to allow reliability testing
Acceptance criteria: Telegram bot registers fake
texts as user texts. Fake texts work like user texts
regarding commands and answers.

Table 3.16: Milestone 4 Mock telegram messages

Title: Weather dependent
travel Priority: Won’t do Weight: 2

I can have Tripper select a travel method based on the weather.
Acceptance criteria: Tripper makes the travel methods walking
and cycling less favourable during its travel method selection
if the weather forecast predicts rain.

Table 3.17: Milestone 5 Weather dependent travel choice

3.2. The future of the product
When more time would be available to further develop Tripper, we would first go on a thorough bug hunt
to make the software more stable. We’d also like to make it possible to serve multiple client calendars

7

3.2. The future of the product 3. Requirements Engineering

at the same time, which is not that far out of reach if we had a little more time. There are some features
that would be a good addition to the working software, but these didn’t make it in the priority queue.
Such as weather depended filters, public transport information, logical transport methods (that you
need to drive back while you came with public transport) and some features that will be thought off in
a possible next quarter.

8

4
Software Architecture

4.1. General architecture
As with all software, we start in main. All of the functions and classes described further in this chapter
come together in the main script. The main script starts with initializing the ngrok tunnel. This tunnel is
used to make our program reachable by the Google webhooks (without opening any ports). After that
we come to user selection. If a new user is desired, we start up the Telegram bot and authenticate a
new user. The Telegram bot is started as a subprocess and runs the whole time in the background.
This enables the user to always change their preferences during operation.

After that, or if an already existing user is selected, a request is send to Google, requesting the
webhooks, which are pointed to the ngrok URL.When all is ready, the whole Tripper calendar is cleared,
to start with a clean slate. After that all events from the Tripper calendar and all calendars tagged with
[Tripper] in the des cription are arranged. Once all the events have been arranged in the proper order,
we continue to the update_tripper function.

The update_tripper function checks all the Tripper events already present if all properties are
still up to date (start, end, location, duration). If not, it will call update_tripper_event, which will
update all outdated properties. In some cases it will decide to completely delete the event and add a
new one.

During it’s traversal of the events, it also checks if there are any new events without a Tripper event
and if it is needed to add one. Adding a new event is done with update_tripper_event. This
function calls mode_selector with the destination event and the previous event to determine which
method of transport is most suited for the trip. Once this has been decided, an event is made with the
title containing the minutes of time travelled and the method of transport. The description contains the
start and end address of the trip and a Google Maps link, to immediately start navigating to the next
event.

Once the startup run is complete, we wait and listen for any webhooks send from Google. This will
trigger an update run, which causes an almost instant update of the changed Tripper event!

4.2. Google Calendar API interface
The Google Calendar API for ‘Events’ or Appointments is wrapped in the CalendarEvent class. This
class has usages and problems to solve:

• Provide a simple and clear interface to work with the existing Google Calendar ‘Events’ from
multiple ‘Calendars’. With the main task being to sort them based on starting time and check the
location.

• An easy way to create new Google Calendar ‘Events’ in a structured and simplified way. This was
needed because the Google Calendar Events API contains a lot of non-functioning, depreciated
and read-only fields. Furthermore some data fields have non-intuitive names. The ‘Title’ of a
Google Calendar Event is referred to as a ‘summary’.

9

4.3. Google Maps API interface 4. Software Architecture

In order to achieve these things, the CalendarEvent class was made. The first thing is that there
are three ways to instantiate an CalendarEvent Object:

__init__ This is the standard Python init-function. It takes 4 parameters:

• a Google Calendar API service
• the calendarID of the calendar in which the event is located. (Or will be located).
• An dict in which the preexisting calendar data is stored.
• an Boolean variable to indicate if the event is a preexisting event of not. It defaults to false.

new This function is an easier way to make a CalendarEvent for an event that does not exist yet. It
takes the following parameters:

• a Google Calendar API service
• the calendarID of the calendar in which the event will be located.

get_event This constructing function sets retrieves the Event data from the calendar directly. It takes
the following parameters:

• a Google Calendar API service
• the calendarID of the calendar in which the event is located.
• the eventID of the Event, that you want the CalendarEvent representation of.

During construction the relevant data of the Google Calendar Event is stored in attributes of the
CalendarEvent. These are exposed as properties with only a getter defined.

This is done in order to ensure the chainable setters are used. These functions (named like
set_FIELD) do three things. First it notes stores a flag of which field was changed, applies the change
and returns the object (self). The returning is done to create a fluent builder-like design pattern for
these fields, which allows chaining of methods.

Some fields can also be locked from the Google Calendar API, the appropriate setter functions can
deal with that and raise a custom error (ReadOnlyError).

When all the desired fields are set, the execute function should be called. This will construct a dict
and create a new Google Calendar Event or update it if it already exists.’
All this has been done to eliminate error due to interfacing with the Google Calendar API, which requires
you to check the following errors yourself (Or you get an error response back):

• Are the minimal fields given?

• Are the field names spelled correctly?

• Do the fields correspond to the intended data? (e.g. the title-like visual thing is actually called)

• Is this field allowed to be changed? (Not locked or Read-Only)

Checking these things by hand is difficult in such a large API, like the Google Calendar API, which also
contain allot of deprecated fields for backwards-compatibility with preexisting Google Calendar events.

4.3. Google Maps API interface
The Google Maps API was quite simple to integrate, as we really only needed the duration of different
travel methods. The Google Maps Distance Matrix API would satisfy all our needs. Wemade a wrapper
function with some network checks and caching, as the calls use our Google Cloud trial balance of $300.

4.4. Users
For all user related business we use the class User. The class is quite simple but very modular. Our
users are identified by their Telegram ID and are stored in the telegram_id attribute. When running
the program, all users are initialized by using the load_users class method. This method reads all
users from our database (a users.json) and stores all attributes in a user data dictionary. This user
data dictionary is readable and writable through the data method, which takes a user_property
name and a value, if writing is desired. Quite a simple system, but thus far future proof and effective.

10

4.5. Telegram bot 4. Software Architecture

4.5. Telegram bot
The interface used for Tripper is a Telegram bot, which consists of two python files, the telegram_bot.py
file and the telegram_response.py file. The former provides the majority of the functionality as this
is the part that listens to any texts the user sends. This is setup using an Updater, which fetches up-
dates for the bot and queues them for handling, and a Dispatcher which dispatches the the updates
to various different handlers.

The interface makes use of three different handlers: a CommandHandler, a MessageHandler and
a CallbackQueryHandler. Depending on the type of update, the dispatcher runs a user defined
function, which, at first, is always a command. From there the user can continue the conversation with
the bot to, for example, change their home location. In order to keep the users separate the bot stores
how far the user is in the conversation for each user in a dictionary. This dictionary gets passed to each
function via the CallbackContext and is persistent as long as the bot is not terminated.

After a user reaches the final input field their reply will be stored in a telegram response object. This
object handles the saving of the preferences to a JSON file and checks what the data is that needs to
be saved and if it is in the right format. After is has confirmed that, the data is saved using methods
from the User class for consistent saving and reading.

The reason the architecture was written this way is because it is quite readable and not difficult to
understand what code is being run when and for what purpose to the point where it is possible to read
the code along as one is going through the interface on telegram.

An overview of the architecture is shown in Figure 4.1.

Telegram Bot Architecture
Jacob Reaves | November 4, 2022

telegram.ext.Updater

+ token: str
+ use_context: bool

+ dispatcher: Dispatcher

+ start_polling()
+ idle()

telegram.ext.Dispatcher

+ handler: Handler

+ add_handler()

telegram_bot.py

+ updater: Updater
+ dp: Dispatcher

+ token: str

+ tgc_help(update: Update, context: CallbackContext)
+ tgc_authorize_user(update: Update, context:

CallbackContext)
+ tgc_change_home(update: Update, context:

CallbackContext)
+ tgc_change_preference(update: Update, context:

CallbackContext)

TelegramResponse

+ response_id: int
+ user_id: str

+ payload: str | dict[str]

+ handle_request()

telegram.ext.Handler

queuesUpdatesFor

1

1

dispatchesUpdatesTo

1

0..*

MessageHandler CommandHandlerCallbackContextHandler

callsFunctionFrom

Save Data
for Tripper

handleRequest

1

0..*

Telegram Message

telegram.ext.CallbackContext

- dispatcher: Dispatcher
- user_data: dict
+ args: list[str]

None

1

1

cachesUserDataTo

1
0..*

Figure 4.1: Telegram Bot Architecture

11

5
Software Testing

5.1. Tests
Lot’s of testing has been done in the creation of Tripper, both automated and non-automated tests.
Some of these non-automated test are still available by running scripts files, that aren’t supposed to
work on their own, for example utils.py, tries to get valid credentials for a test user when run.

The automated (unit)tests are all in the test folder, as is usual when using pytest. These are
separated out by module, and they test various small functions. More details will be described in the
following

5.1.1. Test Google calendar
A google account was made for the group to test our project. In this, calendar tests were made with
random times and random locations to test the software.

In sprint one, the first test was done if a user story ’google API login’ would work. This was done
by getting an API key and a quick start guide from the Google Calendar API to get the first login with
the Google Calendar API and the first information from an event. This first test was successful after a
couple of tries.

At the end of sprint two, the first complete test of the working software was done. There was a ba-
sic version of the total software, with very few features. some calendar events were put in the test
calendar and tested if it would get the travel time to the given events. The travel time was then placed
in the calendar, right before the event. This test was the first concept of the full software that worked.
Although it was a start and it only took the first event of one day. It did give the first full result.

During sprints, there were multiple small tests done to check if the code did what it had to do. These
tests were also put into the automated unittests. For example, if the title of a CalendarEvent could be
changed. Or if the start time of a CalendarEvent was able to be changed. These were all successful
the first time of testing them. This made the group get the confidence to continue coding and not worry
about if the code was wrong.

Later on these tests where expanded by checking more internal changed values. An other test was
also made to check if the custom ReadOnlyError was raised correctly if the CalendarEvent was
locked. There was also a test made to test if a NotImplementedError is raised when an unexpected
change was added to the updated_fields field at creation of the payload for the API call to update
or create a Google Calendar Event.

5.1.2. Test Google Maps
With the same google account, that was made for the calendar tests, tests were done for the software
made for the maps API.

12

5.2. Coverage 5. Software Testing

In sprint one, there was a similar test done for the maps API as the calendar API. A quick start code was
used to get an understanding of the API. Exploring the code with this an understanding of the output
was acquired from the software.

At the end of sprint two using the same test as our first-time software concept. The first version of
the maps API was working in combination with the calendar API. Now the focus was on features that
had to be added.

During sprints, many small tests were done to check small additions of code. This came down to
testing the software with different inputs. Examples of these are: changing the travel method and get-
ting the travel time from one place to another place. The maps API worked quite fast and there were
not a lot of problems during this process.

At some point the possibility to read TU Delft building codes was added, this was also tested with
a non-automated test at the time of creation.

5.1.3. Test telegram bot
The telegram bot was tested manually at first, but towards the end of the project unit tests covering
around 75% of the code (of the telegram bot) were written.

Sprint one was very challenging. There are a lot of wrappers for Telegram, so there were a lot of
choices. However, after researching a couple it was clear that, due to the variety, there were a lot of
resources for various different wrappers, but none of them went in-depth. Having to rely solely on the
documentation [1] made figuring out a way to automatically test difficult. A logging system was set up
to view the incoming user messages on Telegram and how they got processed in order to see how the
software could be improved.

The lack of automated testing made the overall testing process slower than usual, however, it was
still faster than setting up automated tests. That was the case, because automation would require the
mocking of user messages, which entails that numerous responses from Telegram would have to be
mocked, as well as a refactor of the code since the bot would attempt to reply to a non-existent user,
which would not work. However, this in the end did not prove to be a big issue overall. By the end of
sprint two most of the features had been laid out or implemented and the flow of the program is quite
easy, following the flow of the conversation with the user.

A recent deep dive in the source code of the Telegram wrapper revealed an easy way to clean up
the code and implement functionality for multiple customers at the same time. It also inspired a way
to mock user messages without too much refactoring. Later on automatic tests were written despite
previous difficulties. These tests tested the conversation_status after each of the functions. This
variable, unique to each user, is crucial since it signals the bot what code to run in a given function.

5.2. Coverage
The 38 automated tests that are in the software cover 52% of the software. This had a big increase
because we got it to test the telegram bot. The coverage still wasn’t that high, because a lot of IO
functions were hard to get tested. It would have needed to be done with mocking. The time for mocking
was simply not there. The coverage over time was really stable without the telegram bot, but with it
you see it raise by 20% in the last week. In Figure 5.1 below you see the coverage over time.

13

5.2. Coverage 5. Software Testing

Figure 5.1: coverage over time.

14

6
Reflection and Adaptation

6.1. Jasper van Brakel
Working on this project was a nice experience of which I learned a lot. This is because I had worked on
some small software projects prior to this course, but on those I mostly worked alone. So the experience
of working together with a team consisting of people with different backgrounds and programming
experiences was positively interesting. Then designing a software architecture together in a way, that
the work could easily be dived, went smoother than expected, but the planning of the integration could
have been better. In total this course learned me how to work together on software projects in a
structured and organized way. It also reminded me of how easy things can get, when everybody is
communicating clearly with each other, by means of day to day communication and written comments
and documentation.

In the future I want to learn how to write software which is better testable, since this course has also
showed me how the reliability increases a lot, when software is tested properly.

6.2. Maarten Koopmans
This project made it clear that everyone is on a different level of programming or other skills. Because
of that, you need to communicate well to get the best out of everyone and use their abilities as well as
possible. Also that a great plan makes for easier execution. A logical step for me to take as a software
engineer is to get better at programming and learn how to write in a group. And I hope I can take that
step in my next project.

6.3. Dielof van Loon
I think the biggest success during this project was picking our concept. We picked a product that
was doable with clear functionality and not too ambitious. Because all the services we needed to use
where from Google, I knew upfront that enough documentation was available, which also made the
implementation go quite smoothly. While the workload wasn’t always equally distributed, I still am quite
happy with this team, as we have three developers with prior experience and two other developers who
tried to help where they could. This way we where able to make, in my opinion, a nice and (almost)
complete product!

This project taught me primarily the infrastructure used and the unwritten rules as a developer. It
also showed me that I might want to reconsider becoming a Mechanical Engineer.

6.4. Roland van Dam
In my mind, our team has been collaborating really well during this project. At the beginning, it was
clear that the degree of knowledge differed quite a bit between group members. I think that one key
aspect that made our group work well together and what makes a software engineering team work well
in general was that everybody made their expectations of himself and each other very clear. This made
us aware of what we wanted to achieve and what we needed to do to make that happen. Furthermore,

15

6.5. Jacob Reaves 6. Reflection and Adaptation

this course made me understand how software developers can collaborate during code writing and
code engineering in general, since that was still unknown to me.

In the future, I would like to take more initiative with the software architecture and code writing.
Up until now, I have let my teammates take this initiative because I feel like this required certain prior
knowledge and skills that I did not yet possess.

6.5. Jacob Reaves
I was fortunate enough to have decent prior coding experience which made helping to develop the
program a lot easier. This biggest learning point for me was the coding style and the collaboration
aspect. It was crucial that your code could be read and interpreted easily by the others to keep a
steady workflow. Since I have thus far mostly worked on the telegram bot, which does not have tests
yet, there was little point in me setting up automated testing. I did manage to write some tests for the
Telegram bot testing the flow of the application. This was not super useful since the code at that point
had been tested manually quite some times, but it was a valuable learning experience nonetheless.
For example, I had no clue how to patch functions using mocking prior to writing the tests.

One aspect I think we could have implemented better, is the deadlines. We had a plan of what to
do and in what order (namely MoSCoW), but we did not set strict deadlines for our issues, though I do
think we spread the workload relatively evenly across the timeline despite the lack of hard deadlines.
Additionally, even though it is difficult to criticize, the weights we assigned to issues often were not
representative of how much effort they actually took. Most of the time, they took more...

16

7
Conclusion

The purpose of this project was to make a product, with programming. But also to learn how to work in
a group while programming and getting to use programs that are commonly used during these projects.

Our project was a software program where it would automatically add travel time to your calendar,
to get people a more organized life. Our project was split into three different parts, Google Calendar,
Google maps, and the telegram bot. This made it better to split up the work and work more efficiently.
The work was separated by multiple issues, to keep track of what was important. This made it so the
end product at least had the must-have parts in it.

The software that was made during this project, has most of the features added to it, that we wanted.
But there are some things that could be added to the software like weather-dependent adaptation. In
the time that was available, it was not possible to get the complete software that was entirely complete.
But that can always still be worked on.

17

Appendices

18

A
Supporting Material

A.1. Sprint 1
running cycle from 14-9-2022 to 28-9-2022

A.1.1. Planning

Milestone 1
Order Issues Assignees Due date Completion

date
1. Google API login everyone 30-9-2022 22-9-2022
2. Read/write user calendar Jasper van Brakel and

Maarten Koopmans
30-9-2022 29-9-2022

3. Appointment data Jasper van Brakel and
Maarten Koopmans

30-9-2022 -

4. Telegram bot Jacob Reaves 30-9-2022 -
5. Google maps API Dielof van Loon 30-9-2022 -

Table A.1: sprint 1 Planning

A.1.2. Review
Telegram bot is more work than expected and not a lot of information can be found for our setup.
There are multiple wrappers that can be used and only small snippets of information are available.
So it is hard to merge everything. User class all features needed are done. Everything needed more
work than expected. Also, some were more experienced with python than others so it was the plan to
change how much programming was done by less experienced programmers and let them focus on
the non-programming part.

19

A.2. Sprint 2 A. Supporting Material

A.2. Sprint 2
running cycle from 28-9-2022 to 14-10-2022

A.2.1. Planning

Milestone 2
Order Issues Assignees Due date Completion

date
1. Basic interface setup Jacob Reaves 14-10-2022 22-9-2022
2. Interpreting TU delft faculty

codes
Dielof van Loon 14-10-2022 30-9-2022

3. Add dedicated home to each
user

Jacob Reaves 14-10-2022 7-10-2022

4. Estimate travel time using
Google Maps

Dielof van Loon 14-10-2022 30-9-2022

5. Work on chapter 2 and 3 of
the report

Roland van dam 14-10-2022 —

Table A.2: Sprint 2 planning

A.2.2. Review
A basic working version of the software was completed. It is now possible to scan all calendars and
add travel times for the first appointment of the day that has a specified location, based on cycling as
a travel method. The telegram bot is not being used yet.

There was a start made to writing the report because the assessment was made that it had to be
kept up during the project.

A.3. Sprint 3
running cycle from 14-10-2022 to 21-10-2022

A.3.1. Planning

Milestone 3
Order Issues Assignees Due date Completion

date
1. Saving user data Jacob Reaves and Jasper

van Brakel
21-10-2022 21-10-2022

2. Checking validity of location Dielof van Loon 21-10-2022 21-10-2022
3. Add maps link to appoint-

ment
Dielof van loon 21-10-2022 28-10-2022

4. Work on report chapters 1, 2,
3, 4

Roland van Dam and
Maarten Koopmans

21-10-2022 —

Table A.3: Sprint 3 planning

A.3.2. Review
The tripper can now read user data that is stored in a file. Also, the tripper checks whether the appoint-
ment location is a valid location on Google Maps. If there are multiple, it returns the first one. Adding
a Maps link to the appointment will be continued to be worked on in sprint 4. Also, work on the report
is continuous until the deadline of the report.

Because the report was more work than thought beforehand. from now on two people were working
on the report. Because the software engineering process was going so well, it was a good choice to
put less focus on the software itself.

20

A.4. Sprint 4 A. Supporting Material

A.4. Sprint 4
running cycle from 21-10-2022 to 28-10-2022

A.4.1. Planning

Milestone 4
Order Issues Assignees Due date Completion

date
1. Adding link to appointment Dielof van Loon 28-10-2022 28-10-2022
2. Support for multiple simulta-

neous users interfacing with
the telegram bot

Jacob Reaves and Jasper
van Brakel

4-11-2022 2-11-2022

3. Choosing travel method Dielof van Loon 28-10-2022 28-10-2022
4. Working on first version of a

report
Roland van Dam and
Maarten Koopmans

28-10-2022 28-10-2022

Table A.4: Sprint 4 Planning

A.4.2. Review
In A calendar event, there is now a Maps link available. The travel method that is used is now auto-
matically chosen using a max length of walking or biking. As expected setting up simultaneous users
was hard to do, so it hasn’t been finished. The first version of the report was finished to get feedback.

Everything went as planned. The report was handed in in time for the deadline. And there were no
other surprises this sprint.

A.5. Sprint 5
running cycle from 28-10-2022 to 04-11-2022

A.5.1. Planning

Milestone 5
Order Issues Assignees Due date Completion

date
1. Server setup Dielof van Loon 4-11-2022 3-11-2022
2. Support for multiple simulta-

neous users interfacing with
the telegram bot

Jacob Reaves and Jasper
van Brakel

4-11-2022 2-11-2022

3. documentation of the product Everyone 28-10-2022 4-11-2022
4. Finalizing the report Roland van Dam and

Maarten Koopmans
28-10-2022 4-11-2022

Table A.5: Sprint 5 Planning

A.5.2. Review
Tripper is now able to be run on a server. Also, the telegram bot is now fully completed. The documen-
tation has been updated. And the report has been finished with the given feedback from the teaching
assistant.

21

Bibliography
[1] Docs.python-Telegram-Bot.org. python-telegram-bot v20.0a4, 21-10-2022. URL https://docs.

python-telegram-bot.org/en/v20.0a4/.

[2] Google. Google calendar app, 16-4-2006. URL https://play.google.com/store/apps/
details?id=com.google.android.calendar&gl=US.

22

https://docs.python-telegram-bot.org/en/v20.0a4/
https://docs.python-telegram-bot.org/en/v20.0a4/
https://play.google.com/store/apps/details?id=com.google.android.calendar&gl=US
https://play.google.com/store/apps/details?id=com.google.android.calendar&gl=US

	Introduction
	Software Development Process
	Reflection
	Sprint 1 retrospective
	Sprint 2 retrospective
	Sprint 3 retrospective
	Sprint 4 retrospective
	Sprint 5 retrospective

	Requirements Engineering
	User stories
	The future of the product

	Software Architecture
	General architecture
	Google Calendar API interface
	Google Maps API interface
	Users
	Telegram bot

	Software Testing
	Tests
	Test Google calendar
	Test Google Maps
	Test telegram bot

	Coverage

	Reflection and Adaptation
	Jasper van Brakel
	Maarten Koopmans
	Dielof van Loon
	Roland van Dam
	Jacob Reaves

	Conclusion
	Appendices
	Supporting Material
	Sprint 1
	Planning
	Review

	Sprint 2
	Planning
	Review

	Sprint 3
	Planning
	Review

	Sprint 4
	Planning
	Review

	Sprint 5
	Planning
	Review

	Bibliography

